

ENVIRONMENTAL PRODUCT DECLARATION

In accordance with ISO 14025 and EN 15804+A2

Carl Stahl ARC GmbH **GREENCABLE® HEAVY - W 425**

Owner of the declaration

Carl Stahl ARC GmbH Siemensstrasse 2 73079 Suessen Germany

Product

GREENCABLE® HEAVY - W 425

Declared product / Declared unit 1 kg

This declaration is based on Product **Category Rules**

EN 15804:2012 + A2:2019, NPCR 013 Part B for Steel and Aluminium Construction Products. NPCR Part A:2021

Program operator:

EPD Global Majorstuen P.O. Box 5250 N-0303 Oslo Norway

Declaration number NEPD-10469-10469-2

Registration number NEPD-10469-10469-2

Issue date 30.10.2025

Valid to 29.10.2030

EPD Software Emidat Platform v1.0.0

General Information

Product

GREENCABLE® HEAVY - W 425

Program Operator

EPD Global

Majorstuen P.O. Box 5250

N-0303 Oslo

Norway

Phone: +47 23 08 80 00 Email: post@epd-norge.no

Declaration Number

NEPD-10469-10469-2

This declaration is based on Product Category Rules

EN 15804:2012 + A2:2019,

NPCR 013 Part B for Steel and Aluminium Construction

Products,

NPCR Part A:2021

Statements

The owner of the declaration shall be liable for the underlying information and evidence. The Norwegian EPD Foundation shall not be liable with respect to manufacturer, life cycle assessment data and evidences.

Declared unit

1 kg

General information on verification of EPD from EPD tools

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD Global's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD Global, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD Global's General Programme Instructions for further information on EPD tools.

Verification of EPD tool

Charlotte Merlin, FORCE Technology (no signature required)

Owner of the declaration

Carl Stahl ARC GmbH

Contact person

info@carlstahl-arc.com

Phone

0049 7162 948 150 200

Email

info@carlstahl-arc.com

Manufacturer

Carl Stahl ARC GmbH Siemensstrasse 2 73079 Suessen, Germany

Place of production

Süßen, Germany

Management system

-

Issue date

30.10.2025

Valid to

29.10.2030

Year of study

2024

Comparability

EPDs of construction products may not be comparable if they do not comply with EN 15804 and are not seen in a building context. EPD data may not be comparable if the datasets used are not developed in accordance with EN 15804 and if the background systems are not based on the same database (including primary and secondary data).

Development and verification of EPD

The declaration was created using the Emidat EPD tool v1.0, developed by Emidat GmbH. The EPD tool has been approved by EPD Global.

Developer of EPD: Marc Schmidtke Reviewer of company-specific input data and EPD: Christian Hummel

Approved

Håkon Hauan, The Norwegian EPD Foundation

Product

Product description

Steel is a versatile alloy composed primarily of iron and carbon, valued for its exceptional strength, durability, and adaptability across a wide range of applications. Available in multiple grades and finishes—including carbon steel, stainless steel, and alloy steels—it offers varying levels of hardness, corrosion resistance, and weldability. With consistent mechanical properties and high tensile strength, steel serves as a foundational material in construction, manufacturing, and infrastructure.

Steel is widely used in structural frameworks for buildings and bridges, automotive components, pipelines, heavy machinery, and consumer appliances. In construction, structural steel beams and columns form the skeleton of highrise buildings and industrial facilities. In manufacturing, steel is machined into precision parts or rolled into sheets for appliances and enclosures. Its ability to be welded, formed, and treated makes it suitable for demanding environments requiring strength, reliability, and longevity.

Product specification

Name of ingredient	Share of total weight	Country of origin
Metals and alloys	80 - 100 %	Various

Technical data

	Unit	Value
Density	kg / m³	8030
Total mass	kg	1

Market

Germany

Recipients

B2B

LCA: Calculation rules

Declared unit

1 kg

Reference service life

Not defined

Data quality

The foreground data are based on extensive and detailed data collection at the production site of the manufacturer, covering key processes such as raw material sourcing, formulation, and manufacturing. These foreground data are fully linked with corresponding datasets from the background database (ecoinvent 3.10) or with EN15804+A2-compliant EPDs, ensuring consistency, reliability, and maintaining alignment with the latest industry standards.

The overall data representativeness is rated as good with an overall score of 3.95/5, in accordance with EN 15804+A2 Annex E guidance on data quality assessment, considering geographical, technical, and temporal representativeness.

System boundaries (X=included, MND=module not declared)

	Pro	duct	ion	Insta	llation	Use stage				End-of-Life			Next product system				
	Raw material supply	Transport	Manufacturing	Transport	Installation Process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational Energy Use	Operational Water Use	Demolition	Transport	Waste Processing	Disposal	Benefits and loads beyond the system boundary
Module	A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Modules declared	x	x	x	х	MND	MND	MND	MND	MND	MND	MND	MND	x	x	x	x	х
Geography			DE	DE	MND	MND	MND	MND	MND	MND	MND	MND	DE	DE	DE	DE	DE

For the geographies modeled in A1 and A2, refer to Product specification.

Type of EPD: Cradle to gate with options, modules C1-C4, and D

Stage of Material Production and Construction

 $\label{eq:Module A1: Extraction and processing of raw\ materials}$

Module A2: Transportation of raw materials to the plant

Module A3: Steel component production at the plant and waste treatment

Module A4: Transportation to the construction site

Disposal Stage

Module C1: Demolition/Dismantling

Module C2: Transportation of steel demolition waste for processing

 $\label{eq:module C3: Sorting of waste components and recycling of steel} \\$

Module C4: Disposal of steel to landfill

Credits and burdens outside the system boundaries

Module D: Credits and burdens from the use of recycled steel as a replacement for primary steel

Cut-off criteria

No cut-offs were applied.

Allocation

Foreground inventory data (energy and fuels, ancillary materials, emissions and waste) was collected at the production-process level. Using the total output of the production process in 2024, these flows are allocated to one declared unit based on mass.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport to the building site (A4)	Value	Unit
Transported mass	1.00	kg
Truck: Distance	300.00	km
Truck: Energy demand	1.58	MJ / t*km
Truck: Activity	transport, freight, lorry >32 metric ton, EURO6	-
Truck: Capacity utilization	53.30	%

Demolition (C1)	Value	Unit
Diesel for dismantling and sorting	0.04	MJ
Electricity for sorting	0.01	kWh

Transport to the waste facility (C2)	Value	Unit
Mass to landfill	0.10	kg
Mass to recycling	0.90	kg
Distance to landfill	50.00	km
Distance to recycling	50.00	km
Truck: Activity	transport, freight, lorry >32 metric ton, EURO6	-
Truck: Capacity utilization	53.30	%
Truck: Distance	50.00	km
Truck: Energy demand	1.58	MJ / t*km

Waste processing (C3)	Value	Unit
Material for recycling	0.90	kg
Recycling rate	90.00	%

Disposal (C4)	Value	Unit
Material for landfill	0.10	kg

Reuse, recovery and/or recycling potentials (D)	Value	Unit
Amount of secondary material that the system takes in	0.82	kg
Substitution of primary steel	0.16	kg

Calculation of benefits and loads per EN 15804+A2.

LCA: Results

Core environmental impact indicators

Indicator	Unit	A1-A3	A4	C1	C2	С3	C4	D
GWP-total	kg CO₂-eq.	1.03e+00	3.11e-02	8.55e-03	5.18e-03	3.37e-01	6.26e-04	-2.26e-01
GWP-fossil	kg CO₂-eq.	1.02e+00	3.11e-02	8.07e-03	5.18e-03	3.27e-01	6.25e-04	-2.28e-01
GWP-biogenic	kg CO₂-eq.	8.08e-03	1.56e-05	4.64e-04	2.60e-06	9.76e-03	6.47e-08	2.36e-03
GWP-luluc	kg CO₂-eq.	7.64e-04	1.10e-05	8.98e-06	1.84e-06	1.53e-04	3.25e-07	-5.19e-05
ODP	kg CFC-11-Eq	7.86e-09	6.47e-10	1.03e-10	1.08e-10	4.18e-09	1.81e-11	-5.90e-10
AP	mol H+-Eq	5.71e-03	7.34e-05	4.38e-05	1.22e-05	1.07e-03	4.43e-06	-7.74e-04
EP-freshwater	kg P-Eq	3.15e-04	2.19e-06	5.84e-06	3.64e-07	1.30e-04	5.19e-08	-1.09e-04
EP-marine	kg N-Eq	1.07e-03	1.92e-05	1.92e-05	3.21e-06	2.77e-04	1.69e-06	-1.84e-04
EP-terrestrial	mol N-Eq	1.15e-02	2.08e-04	1.99e-04	3.47e-05	3.01e-03	1.84e-05	-1.97e-03
POCP	kg NMVOC-Eq	3.70e-03	1.27e-04	5.97e-05	2.12e-05	1.03e-03	6.60e-06	-6.89e-04
ADPE	kg Sb-Eq	2.29e-05	8.88e-08	9.54e-09	1.48e-08	1.13e-06	9.92e-10	-5.27e-09
ADPF	MJ, net calorific value	1.15e+01	4.66e-01	1.17e-01	7.77e-02	4.52e+00	1.53e-02	-2.09e+00
WDP	m³ world Eq deprived	2.95e-01	2.34e-03	9.85e-04	3.90e-04	2.90e-01	4.29e-05	-2.30e-02

GWP-total: Global Warming Potential - total**GWP-fossil**: Global warming potential - fossil**GWP-biogenic**: Global Warming Potential - biogenic**GWP-luluc**: Global Warming Potential - luluc**ODP**: Depletion potential of the stratospheric ozone layer**AP**: Acidification potential, Accumulated Exceedance**EP-freshwater**: Eutrophication potential - freshwater**EP-marine**: Eutrophication potential - marine**EP-terrestrial**: Eutrophication potential - terrestrial**POCP**: Photochemical Ozone Creation Potential**ADPE**: Abiotic depletion potential - non-fossil resources**ADPF**: Abiotic depletion potential resources**WDP**: Water (user) deprivation potential

Additional indicators

Indicator	Unit	A1-A3	A4	C1	C2	С3	C4	D
PM	disease incidence	8.31e-08	3.03e-09	1.04e-09	5.04e-10	4.49e-08	1.01e-10	-1.16e-08
IRP	kBq U235-Eq	6.12e-02	5.67e-04	1.04e-03	9.44e-05	8.60e-02	9.77e-06	7.46e-03
ETP-fw	CTUe	1.00e+01	1.11e-01	2.18e-02	1.84e-02	2.46e+00	2.10e-03	-2.08e+01
HTP-c	CTUh	2.55e-08	1.99e-10	2.25e-11	3.31e-11	6.83e-09	2.83e-12	-7.90e-08
HTP-nc	CTUh	2.00e-08	3.08e-10	3.75e-11	5.13e-11	1.50e-08	2.75e-12	8.28e-11
SQP	dimensionless	5.39e+00	4.69e-01	1.46e-02	7.82e-02	1.57e+00	3.02e-02	-3.38e-01

PM: Potential incidence of disease due to PM emissionsIRP: Potential Human exposure efficiency relative to U235ETP-fw: Potential Comparative Toxic Unit for ecosystemsHTP-c: Potential Comparative Toxic Unit for humans - cancer effectsHTP-nc: Potential Comparative Toxic Unit for humans - non-cancer effectsSQP: Potential Soil quality index

IRP: This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

ETP-fw, **HTP-r**, **HTP-r** and **SQP**: The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experienced with these indicators.

Use of resources

Indicator	Unit	A1-A3	A4	C1	C2	С3	C4	D
PERE	MJ	2.42e+00	7.40e-03	1.65e-02	1.23e-03	1.57e+00	1.42e-04	1.75e-01
PERM	MJ	0	0	0	0	0	0	0
PERT	MJ	2.42e+00	7.40e-03	1.65e-02	1.23e-03	1.57e+00	1.42e-04	1.75e-01
PENRE	MJ	1.15e+01	4.66e-01	1.17e-01	7.77e-02	4.52e+00	1.53e-02	-2.09e+00
PENRM	MJ	0	0	0	0	0	0	0
PENRT	MJ	1.15e+01	4.66e-01	1.17e-01	7.77e-02	4.52e+00	1.53e-02	-2.09e+00
SM	kg	8.23e-01	0	0	0	0	0	1.63e-01
RSF	MJ	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0
FW	m³	9.12e-03	6.78e-05	3.25e-05	1.13e-05	7.02e-03	1.59e-05	-3.76e-04

PERE: Primary energy resources - renewable: use as energy carrier PERM: Primary energy resources - renewable: used as raw materials PERT: Primary energy resources - renewable: total PENRE: Primary energy resources - non-renewable: used as raw materials PENRT: Primary energy resources - non-renewable: total SM: Use of secondary material RSF: Renewable secondary fuels NRSF: Non-renewable secondary fuels PENRE: Non-renewable secondary fuels NRSF: Non-renewable

Waste flows

Indicator	Unit	A1-A3	A4	C1	C2	С3	C4	D
HWD	kg	9.22e-01	6.78e-04	2.18e-04	1.13e-04	3.89e-01	1.70e-05	1.54e-02
NHWD	kg	2.00e+00	1.36e-02	2.87e-02	2.26e-03	4.66e-01	3.90e-04	-6.48e-01
RWD	kg	1.53e-05	1.40e-07	3.09e-07	2.34e-08	1.99e-05	2.38e-09	1.56e-06

HWD: Hazardous waste disposed NHWD: Non hazardous waste disposed RWD: Radioactive waste disposed

Output flows

Indicator	Unit	A1-A3	A4	C1	C2	С3	C4	D
CRU	kg	0	0	0	0	0	0	0
MFR	kg	1.92e-05	0	0	0	9.00e-01	0	0
MER	kg	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0

CRU: Components for re-useMFR: Materials for recyclingMER: Materials for energy recoveryEEE: Exported electrical energyEET: Exported thermal energy

Name	Value	Unit
Biogenic carbon content in product	0	kg C
Biogenic carbon content in accompanying packaging	0	kg C

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

Electricity consumption in the manufacturing phase is composed from the source below. Electricity is represented by data in ecoinvent 3.10 regionalised for Germany.

Electricity	Unit	Value
Electricity from grid	kg CO₂-eq. / kWh	0.84

Dangerous substances

The product contains no hazardous substances given by the REACH Candidate List or the Norwegian Priority List.

Additional environmental information

Additional environmental impact indicators required in NPCR Part A for construction products

Indicator	Unit	A1-A3	A4	C1	C2	С3	C4	D
GWP-IOBC	kg CO₂-eq.	1.02e+00	3.11e-02	8.11e-03	5.18e-03	3.28e-01	6.26e-04	-2.28e-01

GWP-IOBC: Global Warming Potential - Instantaneous oxidation of biogenic carbon

Bibliography

CEN/TR 15941:2010 Sustainability of construction works - Environmental product declarations - Methodology for selection and

use of generic data

EN 15804:2012+A2:2019 Sustainability of construction works - Environmental product declarations - Core rules for the product

category of construction products

EN 15942:2022-04 Sustainability of construction works - Environmental product declarations - Communication format

business-to-business

ISO 14025:2011-10 Environmental labels and declarations - Type III environmental declarations - Principles and procedures

ISO 14040:2021-02 Environmental management - Life cycle assessment - Principles and framework
ISO 14044:2021-02 Environmental management - Life cycle assessment - Requirements and guidelines

ecoinvent v3.10 ecoinvent, Zurich, Switzerland, database version 3.10

NPCR 013:2021 Product category rules, Part B: Steel and aluminium construction products. Issue date: 06.10.2021; validity

extended to 30.06.2026.

NPCR Part A:2021 Construction products and services, Version 2.0. Issue date: 24.03.2021; validity extended to 24.03.2026.

	Program Operator	Phone	+47 23 08 80 00
© epd-global	EPD Global		
Powered by EPD-Norway	P.O. Box 5250 Majorstuen, N-0303 Oslo	Email	post@epd-norge.no
Toweled by Et B Norway	Norway	Web	www.epd-global.no
	Publisher	Phone	+47 23 08 80 00
© epd-global	EPD Global		
Powered by EPD-Norway	P.O. Box 5250 Majorstuen, N-0303 Oslo	Email	post@epd-norge.no
Towered by Li b-Norway	Norway	Web	www.epd-global.no
	Owner of the declaration	Phone	0049 7162 948 150 200
Open Chalai	Carl Stahl ARC GmbH		
Carl Stahl	Siemensstrasse 2, 73079 Suessen	Email	info@carlstahl-arc.com
ARCHITEKTUR	Germany	Web	<u>www.carlstahl-</u>
			architektur.com/
	Author of the life cycle assesment	Phone	0049 7162 948 150 200
O a d Cuald	Carl Stahl ARC GmbH		
Carl Stahl	Siemensstrasse 2, 73079 Suessen	Email	info@carlstahl-arc.com
ARCHITEKTUR	Germany	Web	<u>www.carlstahl-</u>
			<u>architektur.com/</u>
ECO PLATFORM		Web	www.eco-platform.org
FDD	ECO Platform	WCD .	www.eeo piacrorm.org
VERIFIED	ECO Portal	Web	ECO Portal
	Development of FDD was sometime.	Discourse	. 40 476 56 06 77 04
	Developer of EPD generator	Phone	+49 176 56 96 77 91
EMIDAT	Emidat GmbH		
	Sandstraße 33, 80335 München	Email	epd@emidat.com
	Germany	Web	www.emidat.com